Top Health Tools
Top Health Tools

Top Reports
Top Reports
 
Top Articles
Top Articles

Top Reviews
Top Reviews
   
Humans Naturally Produce Proteins
Which Prevent H1N1 and other Viruses


Howard Hughes Medical Institute researchers have identified a naturally occurring human protein that helps prevent infection by H1N1 influenza and other viruses, including West Nile and dengue virus.

A research team led by Howard Hughes Medical Institute investigator Stephen J. Elledge and his colleague, Abraham Brass, discovered that human cells respond to infection by the H1N1 influenza virus by ramping up production of proteins that have unexpectedly powerful antiviral effects. In cultured human cells, those proteins, whose functions were previously unknown, block the replication of H1N1 influenza virus, West Nile virus, and dengue virus.

The finding, reported December 17, 2009, in an early online article in the journal Cell, is the result of a collaborative effort by researchers at the Howard Hughes Medical Institute, Harvard Medical School, Massachusetts General Hospital, Yale Medical School, and the Wellcome Trust Sanger Institute in Cambridge, UK.

As with other viruses, the influenza virus has only a few genes of its own, and must commandeer proteins produced by its host cell to complete its life cycle. The current study began when Elledge and his colleagues set out to identify the host proteins that the H1N1 virus needs to enter cells and replicate inside them.

To sift quickly through thousands of proteins, Elledge and his colleagues set up large arrays of cultured human cells, and then used a robotic device to deliver small strands of interfering RNA (siRNA) to each well in the array. Each siRNA strand was designed to block the expression of an individual gene, and thus the production of the corresponding protein. For each such gene/protein "knockdown," the automated devices recorded the effect on H1N1 activity by measuring any change in the presence of viral protein on the surface on infected cells.

"This work illustrates the important interplay between the cell innate immune response and virus replication," said Lamb. "If influenza didn't induce an innate immune response, influenza would win the war and then the cell (organism) would die."

Interestingly enough, vaccines promote the inhibition of the immune response which may temporarily leave cells vulnerable to attack.


Reference Sources 128
December 18, 2009
Share/Bookmark
...............................................................................................................

This site is owned and operated by PreventDisease.com 1999-2014. All Rights Reserved. All content on this site may be copied, without permission, whether reproduced digitally or in print, provided copyright, reference and source information are intact and use is strictly for not-for-profit purposes. Please review our copyright policy for full details.
aaa
Interact
volunteerDonateWrite For Us
Stay Connected With Our Newsletter