Top Health Tools
Top Health Tools

Top Reports
Top Reports
Top Articles
Top Articles

Top Reviews
Top Reviews
   
 


Share/Bookmark
...............................................................................................................

May 25, 2012
Vaccines and Injections Soon To Be Delivered Via Small Needleless High-Pressure Jets


Once the public grew more skeptical of vaccines after the pandemic flu hoax, mainstream medicine was forced to adopt new methods of tackling the antagonists of their beloved immunization campaigns (a misnomer in itself). One idea was to make vaccines more friendly to the public. Something that has always struck fear (and rightfully so) in the hearts of children is the vaccine needle. So the heads of conventional medicine approached MIT researchers to develop a needleless delivery system that would at least squelch the "needle phobia" to make drug injections seamless, painless and free from any stigma attached to the jab. It seems that we'll soon have change those graphic depictions of hypodermic needles to a device that is very different as technology continues to progress while modern medicine continues to regress.
The researchers at Massachsetts Institute of Technology (MIT) rose to the task. They have now engineered a device that delivers a tiny, high-pressure jet of any drug through the skin without the use of any kind of needle. The device can be programmed to deliver a range of doses to various depths -- an improvement over similar jet-injection systems that are now commercially available.

The innovation is being praised on the merit of one strong benefit. The technology may help reduce the potential for needle-stick injuries; the Centers for Disease Control and Prevention estimates that hospital-based health care workers accidentally prick themselves with needles 385,000 times each year.

However, to the vaccine manufacturing industry and promoters of vaccines, namely conventional medicine, it serves the obvious secondary benefit -- a needleless device will help improve compliance among children and patients who have always had needle phobia, thus potentially increasing the demographic to a wider population.

"If you are afraid of needles...compliance can be an issue," says Catherine Hogan, a research scientist in MIT's Department of Mechanical Engineering and a member of the research team. "We think this kind of technology … gets around some of the phobias that people may have about needles."

The team reports on the development of this technology in the journal Medical Engineering & Physics.

Pushing Past The Needle

In the past few decades, scientists have developed various alternatives to hypodermic needles. For example, nicotine patches slowly release drugs through the skin. But these patches can only release drug molecules small enough to pass through the skin's pores, limiting the type of medicine that can be delivered.

The joint use of nanoelectronics, photolithography, and new biomaterials, have enabled the required manufacturing technology towards nanorobots for common medical applications, such as surgical instrumentation, diagnosis and drug delivery.

Through nanotechnology, researchers have also been able to create artificial pores able to transmit nanoscale materials through membranes.

A UC biomedical engineering study appearing in the journal Nature Nanotechnology, Sept. 27, 2009, successfully inserted the modified core of a nanomotor, a microscopic biological machine, into a lipid membrane. The resulting channel enabled them to move both single- and double-stranded DNA through the membrane.

Doug Dorst, a microbiologist and vaccine critic in South Wales, says these advances have an immense appeal to vaccine makers. "Biotech companies and their researchers have quickly moved most funding initiatives towards nanotechnology to increase the potency of their vaccines," he said. If microorganisms inside of vaccines can be coaxed into targeting or invading specific cells, they could achieve their goal at an accelerated rate over conventional vaccines. "Depending on which side of the vaccine debate you're on, whether pro or con, nanobots inside vaccine preparations could advance their effectiveness exponentially by either dramatically improving or destroying immunity depending on their design," he added.

Dorst claims that present day nanobot technology could just as easily be used to advance biological weapons as they can to advance human health. "For every fear that biotech propaganda proliferates about deadly diseases and how vaccines prevent them, it is one more lie to incrementally convince the masses that vaccines are effective."

Breaching the skin

The MIT team, led by Ian Hunter, the George N. Hatsopoulos Professor of Mechanical Engineering, has engineered a jet-injection system that delivers a range of doses to variable depths in a highly controlled manner. The design is built around a mechanism called a Lorentz-force actuator -- a small, powerful magnet surrounded by a coil of wire that's attached to a piston inside a drug ampoule. When current is applied, it interacts with the magnetic field to produce a force that pushes the piston forward, ejecting the drug at very high pressure and velocity (almost the speed of sound in air) out through the ampoule's nozzle -- an opening as wide as a mosquito's proboscis.

The speed of the coil and the velocity imparted to the drug can be controlled by the amount of current applied; the MIT team generated pressure profiles that modulate the current. The resulting waveforms generally consist of two distinct phases: an initial high-pressure phase in which the device ejects drug at a high-enough velocity to "breach" the skin and reach the desired depth, then a lower-pressure phase where drug is delivered in a slower stream that can easily be absorbed by the surrounding tissue.

Through testing, the group found that various skin types may require different waveforms to deliver adequate volumes of drugs to the desired depth.

"If I'm breaching a baby's skin to deliver vaccine, I won't need as much pressure as I would need to breach my skin," Hogan says. "We can tailor the pressure profile to be able to do that, and that's the beauty of this device."

Samir Mitragotri, a professor of chemical engineering at the University of California at Santa Barbara, is developing new ways to deliver drugs, including via jet injection. Mitragotri, who was not involved with the research, sees the group's technology as a promising step beyond jet injection designs currently on the market.

"Commercially available jet injectors … provide limited control, which limits their applications to certain drugs or patient populations," Mitragotri says. "[This] design provides excellent control over jet parameters, including speed and doses … this will enhance the applicability of needleless drug devices."

Targeting Developed Nations To Prevent Vaccine Spoilage

The team is also developing a version of the device for transdermal delivery of drugs ordinarily found in powdered form by programming the device to vibrate, turning powder into a "fluidized" form that can be delivered through the skin much like a liquid. Hunter says that such a powder-delivery vehicle may help solve what's known as the "cold-chain" problem: Vaccines delivered to developing countries need to be refrigerated if they are in liquid form. Often, coolers break down, spoiling whole batches of vaccines. Instead, Hunter says a vaccine that can be administered in powder form requires no cooling, avoiding the cold-chain problem.

Dave Mihalovic is a Naturopathic Doctor who specializes in vaccine research, cancer prevention and a natural approach to treatment.


Share/Bookmark
...............................................................................................................

This site is owned and operated by PreventDisease.com 1999-2017. All Rights Reserved. All content on this site may be copied, without permission, whether reproduced digitally or in print, provided copyright, reference and source information are intact and use is strictly for not-for-profit purposes. Please review our copyright policy for full details.
aaa
Interact
volunteerDonateWrite For Us
Stay Connected With Our Newsletter